七桥问题为什么无解(七桥问题的解决方法)

励志句子- 2023-08-08 18:16:33

七桥问题是不是真的无解

很多朋友对于七桥问题为什么无解和七桥问题解决办法不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!

本文目录

  1. 七桥问题的答案
  2. 七桥问题为什么无解
  3. 七桥定律解法
  4. 哥尼斯堡七桥问题是由谁先解决的

七桥问题的答案

18世纪,在哥尼斯堡城风景秀美的普莱格尔河上有7座别致的拱桥,将河中的两个岛和河岸连结(如下图)。

城中的居民经常沿河过桥散步。城中有位青年很聪明,爱思考,有一天,这位青年给大家提出了这样一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是举世闻名的七桥问题,当时的人们始终没有能找到答案。

大数学家欧拉从朋友那里听到这个问题,很快便证明了这样的走法不存在。欧拉是这样解决问题的:把图中被河隔开的陆地看成A、B、C、D4个点,7座桥表示成7条连接这4个点的线,思考过程如下图:

伟大的数学家欧拉,睿智地把这样一个实际问题抽象成了一个由点线组成的简单的几何图形,把要解决的问题转化成图(二)的一笔画问题了。这样一个抽象化的过程是欧拉解决这个问题时最精彩的思考,也是最值得我们学习的地方。因为图(二)不能一笔画成,所以人们不能一次走遍7座桥。1736年,欧拉把这题的结果发表在圣彼得堡科学院学报上,欧拉对“七桥问题”的研究是图论研究的开始,可以说,正是这个问题的研究使其成为“图论”的鼻祖。

那么欧拉是如何判断图(二)不可以一笔画成呢?为了便于大家看懂,结合这个例子,我用自己的语言来说明一下一笔画问题的解题思路:这个图形中共有4个点7条线,每个点都是若干条路线的公共端点。如果一个点是偶数条线的公共端点,我们称这个点为双数点(或偶点);如果一个点是奇数条线的公共端点,我们称这个点为单数点(或奇点)。图(二)中A点是5条线的公共端点,B、C、D点都是3条线的公共端点,因此图(二)有4个奇点。一般,我们把起笔的点称为起点,停笔的点称为终点,其它的点称为路过点。显然一笔画图形中所有路过点如果有进去的线就必须有出来的线,从而每个点连接的线数必须有偶数个才能完成一笔画,如果路过点中出现奇点,必然就会出现没有走过的路线或重复路线。因此在一笔画图形中,只有起点和终点可以是奇点(起点可以只出不进,终点可以最后进这个点就不出了),也就是说最多只能有两个奇点,以一个奇点为起点,另一个奇点为终点。因为图(二)有4个奇点,因此图(二)不能一笔画成。

另外两点说明:

一、一笔画图形中所有的线必须是连续的,因为笔不离纸,如果一个图形由两个断开的部分组成,肯定不能一笔画。例如“国”这个字就不能一笔写出来。

二、一笔画图形中的奇点都是成对出现的(因为每条线都有两个端点,所有线的端点和是偶数),图形中没有奇点,都是偶点时,可以一笔画成,但起点和终点必须选择同一点。

结合以上说明,解决一笔画问题,第一步是找出图中所有点,判断其是奇点还是偶点;第二步是根据奇点的个数作出正确的判断;第三步是让孩子用铅笔试着画一画,验证自己的判断。

七桥问题为什么无解

七桥问题就是一笔划出从一座桥到这座桥本身的一个封闭图形.你数一下七座桥的连线,会发现有4个与奇数条线相连的点,因此七桥问题无解.

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有7!=5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了著名的“哥尼斯堡七桥问题”。1735年,有几名大学生写信给当时正在俄罗斯的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但最终没成功。

七桥定律解法

七桥问题出现在十八世纪,欧洲布勒格尔河的两条支流在哥尼斯交会,然后横贯全城,流入大海。

河心有一个小岛。河水把城市分成了4块,于是,人们建造了7座各具特色的桥,把哥尼斯堡连成一体。有人提出一个有趣的问题:谁能够一次走遍所有的7座桥,而且每座桥都只通过一次?这就是著名的七桥问题.这个问题其实就是一个一笔画的问题,当时的著名数学家欧拉研究了这个问题.并解决了这个问题.答案是:不可能!因为他有四个奇数交点,一笔画只能解决两个奇数交点.这个问题引起了一个新的数学分支的产生---拓扑学.

哥尼斯堡七桥问题是由谁先解决的

哥尼斯堡七桥问题是由瑞士数学家欧拉(LeonhardEuler)在1735年首次解决的。

欧拉在解决这个问题时,发展了图论的基本原理,奠定了现代图论的基础。他将问题转化为一个图的欧拉路径问题,证明了欧拉路径的存在性与特性,进而得出了解决七桥问题的结论。欧拉的解决方法不仅解决了具体的七桥问题,还开创了图论领域的重要分支,对数学和工程学等领域产生了深远的影响。

END,本文到此结束,如果可以帮助到大家,还望关注本站哦!

从七桥问题开始 全面介绍图论及其应用
  • 声明:本文内容来自互联网不代表本站观点,转载请注明出处:bk.66688815.com/11/89217.html
上一篇:上火嘴角长痘痘怎么办(上火嘴角起小疙瘩)
下一篇:上海各区电话号码开头(上海各区电话号码开头是多少)
相关文章
返回顶部小火箭