大数据的冷知识 大数据的冷知识有哪些

互联网- 2023-09-09 16:59:37

天天拍车大数据报告9月版出炉 二手车冷知识不少

大家好,今天小编来为大家解答以下的问题,关于大数据的冷知识,大数据的冷知识有哪些这个很多人还不知道,现在让我们一起来看看吧!

本文目录

  1. 五分钟看懂大数据技术
  2. 大数据测试需要掌握哪些知识
  3. 什么是大数据通俗讲解
  4. 大数据基础知识大汇总

大数据技术涉及:数据的采集、预处理、和分布式存储、以及数据仓库、机器学习、并行计算和可视化等方面。

对于大数据技术,应用广泛的是以hadoop和spark为核心的生态系统。hadoop提供一个稳定的共享存储和分析系统,存储由hdfs实现,分析由mapreduce实现,

1、hdfs:Hadoop分布式文件系统,运行与大型商用机集群

hdfs是gfs的开源实现,提供了在廉价服务器集群中进行大规模分布式文件存储的能力。

2、hbase:分布式的列存储数据库。hbase将hdfs作为底层存储,同时支持mapreduce的批量计算和点查询(随机读取)

hbase是一个建立在hdfs之上,面向列的nosql数据库。它可用于快速读写大量数据,是一个高可靠、高并发读写、高性能、面向列、可伸缩和易构建的分布式存储系统。hbase具有海量数据存储、快速随机访问和大量写操作等特点。

在kudu出现之前,hadoop生态环境的存储主要依赖hdfs和hbase。在追求高吞吐、批处理的场景中,使用hdfs,在追求低延时且随机读取的场景中,使用hbase,而kudu正好能兼容这两者。

3、批处理计算的基石:mapreduce

批处理计算主要解决大规模数据的批量处理问题,是日常数据分析中常见的一类数据处理需求。业界常用的大数据批处理框架有mapreduce\spark\tez\pig等。其中mapdeduce是比较有影响力和代表性的大数据批处理计算框架。它可以并发执行大规模数据处理任务,即用于大规模数据集(大于1tb)的并行计算。mapreduce的核心思想:将一个大数据集拆分成多个小数据集,然后在多台机器上并行处理。

4、hive:分布式数据仓库,管理hdfs中存储的数据,并提供基于sql的查询语言用于查询数据

1.什么是大数据

大数据是一个大的数据集合,通过传统的计算技术无法进行处理。这些数据集的测试需要使用各种工具、技术和框架进行处理。大数据涉及数据创建、存储、检索、分析,而且它在数量、多样性、速度方法都很出色,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

2.大数据测试类型

测试大数据应用程序更多的是验证其数据处理,而不是测试软件产品的个别功能。当涉及到大数据测试时,性能和功能测试是关键。处理可以是三种类型:

批量

实时

交互在测试应用程序之前,有必要检查数据的质量,并将其视为数据库测试的一部分。它涉及检查各种字段,如一致性,准确性,重复,一致性,有效性,数据完整性等。

3.容错性测试

可从部分失效中自动恢复,而且不会验证的影响整体性能,特别地,当故障发生时,大数据分析系统应该在进行恢复的同时继续以可接受的方式进行操作,在发生错误时某种程度上可以继续操作,需根据应用场景来设计解决方案和具体部署,然后手动测试。

4.可用性测试

高可用性已是大数据分析不可或缺的特性之一,从而保证数据应用业务的连续性.大数据高可用性对很多应用非常关键,需要严格进行测试和验证,以手动测试为主。

5.扩展性测试

弹性扩展能力对于大数据时代的文件系统尤其重要,文件系统扩展性测试主要包括测试系统弹性扩展能力(扩展/回缩)及扩展系统带来的性能影响,验证是否具有线性扩展能力,以手动测试为主。

6.稳定性测试

大数据分析系统通常是不间断长期运行,稳定性的重要性不言而喻,稳定测试主要验证系统在长时间(7/30/180/365*24)允许下,系统是否仍然能够正常运行,功能是否正常.稳定性测试通常采用自动化方式进行,LTP,10ZONE,POSTMARK,FIO等工具对测试系统产生负载,同时需要验证功能。

有人说大数据技术是第四次技术革命,这个说法其实不为过。

很多人只是听过大数据这个词或者是简单知道它是什么,那么它是什么呢,在这里就通俗点来说一下个人对大数据的理解。

大数据,很明显从字面上理解就是大量的数据,海量的数据。大,意思就是数据的量级很大,不上TB都不好意思说是大数据。数据,狭义上理解就是12345那么些数据,毕竟计算机底层是二进制来存的,那么在大数据领域,数据就不仅仅包括数字这些,它可以是所有格式的东西,比如日志,音频视频,文件等等。

所以,大数据从字面上理解就是海量的数据,技术上它包括这些海量数据的采集,过滤,清洗,存储,处理,查看等等部分,每一个部分包括一些大数据的相关技术框架来支持。

举个例子,淘宝双十一的总交易额的显示,后面就是大数据技术的支持,全国那么多淘宝用户的交易记录汇聚到一起,数据量很大,而且要做到实时的展现,就需要强有力的大数据技术来处理了。

数据量一大,那么得找地方来存,一个服务器硬盘可以挂多少,肯定满足不了这么大的数据量存储啊,所以,分布式的存储系统应运而生,那就是HDFS分布式文件系统。简单的说,就是把这么大的数据分开存在甚至几百甚至几千台服务器上,那么管理他们的系统就是HDFS文件系统,也是大数据技术的最基本的组件。

有地方存了,需要一些分布式的数据库来管理查询啊,那就有了Hbase等,还需要一些组件来计算分析这些数据啊,mapreduce是最基本的计算框架,其他的计算框架Spark和Storm可以完成实时的处理,其中HDFS和MapReduce组成了Hadoop1.

总之,一切都是数据。我们的历史,是不是都是大量的数据保存下来的,现在我们也是大数据的生活,天天有没有接到骚扰电话还知道你姓什么,你查话费什么的从几亿人的数据中查到你的信息,大数据生活。未来,大数据将更深刻的渗透到生活中。

大数据的基础知识,应当包括以下几方面。

一是大数据的概念。

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力,洞察发现力和流程优化能力的海量,高增长率和多样化的信息资产。

二是大数据主要解决的问题。解决的主要问题有海量数据的存储,分析计算,统一资源管理调度。

三是大数据的特点。

特点主要有,数据量越来越大,数据量增长越来越快,数据的结构多种多样,价值密度的高低与数据总量大小成正比。

四是大数据应用场景。

包括物流,仓储,零售,旅游,推荐,保险,金融,房地产,人工智能。以及大数据部门组织结构等等。

关于大数据的冷知识和大数据的冷知识有哪些的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

全民阅读行为大揭底 大数据告诉你各地人民 冷知识
  • 声明:本文内容来自互联网不代表本站观点,转载请注明出处:bk.66688815.com/13/166454.html
上一篇:哪吒冷知识大全图片(哪吒百科知识)(秒懂百科哪吒)
下一篇:六大冷知识?几个冷知识(讲几个冷知识)
相关文章
返回顶部小火箭